

Преобразователь сигналов интерфейсов RS232 – RS485 EL203-3

Руководство по эксплуатации

Москва 2017

Содержание

1 Описание и работа	3
1.1 Назначение	3
1.2 Особенности	3
1.3 Технические характеристики	3
1.4 Устройство преобразователя	5
1.4.1 Внешний вид и расположение разъёмов	5
1.4.2 Описание индикаторов	6
1.4.3 Описание порта интерфейса RS232	6
1.4.4 Описание порта интерфейса RS485	7
1.4.5 Питание преобразователя	9
1.5 Описание работы	9
1.5.1 Режимы работы	9
2 Эксплуатация	12
2.1 Эксплуатационные ограничения	12
2.2 Подготовка преобразователя к эксплуатации	12
2.3 Подключение преобразователя	12
2.4 Настройка режимов работы	13
2.4.1 Настройка режима передачи данных с фиксированными параметрами	14
3 Техническое обслуживание	18
4 Текущий ремонт	18
5 Хранение	18
6 Транспортирование	18
7 Сведения о содержании драгоценных металлов	18
8 Утилизация	18
9 Гарантии изготовителя	18

1 Описание и работа

1.1 Назначение

Преобразователь сигналов интерфейсов RS232 — RS485 EL203-3D (далее – преобразователь) позволяет подключать к устройству, оснащенному интерфейсом RS232, до 31 устройства с интерфейсом RS485.

1.2 Особенности

Особенности преобразователя:

- автоматическое определение направления передачи данных по RS485;
- режим управления направлением передачи данных сигналом RTS;
- интерфейс RS485 выведен на разъёмные клеммные колодки (сечение провода 2,5мм²);
- интерфейс RS232 выведен на разъём DB9-M;
- гальваническая изоляция порта интерфейса RS485 1 кВ;
- порт интерфейса RS485 имеет защиту от статического электричества;
- каждый порт интерфейса RS485 имеет защиту от замыкания сигнальных линий на источники напряжения до 60В;
- гальванически изолированное напряжение 5В, выведенное на разъём интерфейса RS485;
- уровни сигналов интерфейса RS232 соответствует EIA232E Standard;
- быстрая настройка режимов работы одной кнопкой;
- светодиодная индикация процесса и направления передачи данных;
- не требует драйверов;
- Крепление на DIN-рейку;
- промышленный температурный диапазон работы.

1.3 Технические характеристики

Таблица 1 – Технические характеристики

Наименование параметра	Значение
Общие параметры	,
Интерфейсы	RS232,

Наименование параметра	Значение	
	RS485	
Максимальная скорость передачи, кбит/с	120	
Напряжение питания, В	От 9 до 35	
Максимальный ток потребления ¹ , А	0,35	
Материал корпуса	Пластик	
Вариант монтажа	Ha DIN-рейку	
Температурный диапазон работы, °С	От –40 до +85	
Габаритные размеры, мм	98 x 53 x 59	
Масса, г	85	
Параметры порта интерфейса RS232		
Разъём	DB9-M	
Сигнальные линии интерфейса ²	RXD, TXD, GND, CTS	
Параметры порта интерфейса RS485		
Максимальное количество устройств в сегменте сети, шт.	32	
Разъём	Клеммы	
Сигнальные линии интерфейса ³	A, B, GND, +5	
Напряжение гальванической изоляции, кВ	1	
Сопротивление согласующего резистора, Ом	120	
Допустимое рабочее синфазное напряжение между линиями A и GND, B и GND, B	От -0,6 до +12	
Предельно допустимое напряжение между линиями A и B, A и GND, B и GND, B	От -60 до +60	
Параметры источника питания, выведенного на разъём интерфейса RS485		
Напряжение, В	5	
Максимальный ток ⁴ , A	0,18	

 $^{^{1}}$ При подключении внешнего устройства к источнику питания, выведенного на разъём интерфейса RS485.

² Описание сигнальных линий интерфейса RS232 приведено в таблице 2.

³ Описание сигнальных линий интерфейса RS485 приведено в таблице 3.

⁴ Максимальный ток зависит от напряжения питания преобразователя (см. рисунок 1).

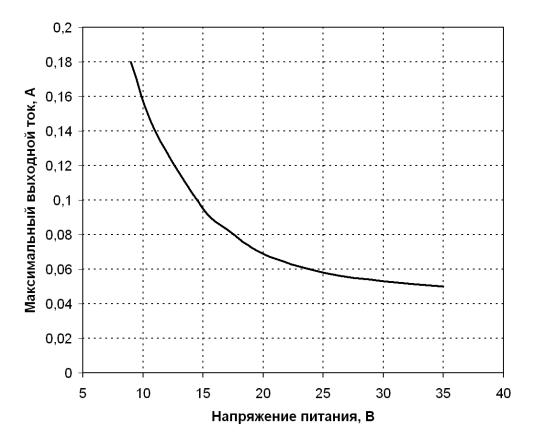


Рисунок 1 – График зависимости максимального выходного тока источника питания, выведенного на разъём интерфейса RS485, от напряжения питания преобразователя

1.4 Устройство преобразователя

1.4.1 Внешний вид и расположение разъёмов

Внешний вид преобразователя, расположение разъёмов и индикации показаны на рисунке 2.

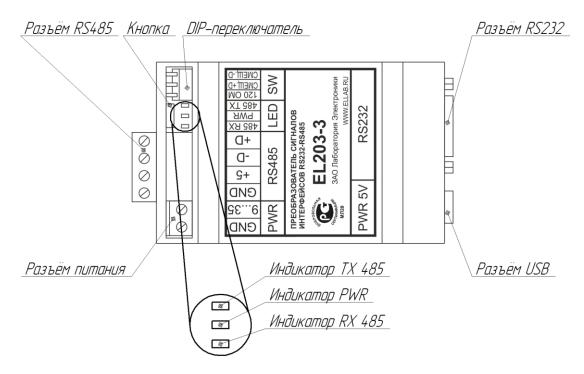


Рисунок 2 – Расположение разъёмов и индикации

1.4.2 Описание индикаторов

На плате преобразователя вынесены три светодиодных индикатора зеленого цвета, которые используются для отображения процесса передачи данных, а также для настройки режимов работы преобразователя. Во время работы преобразователя средний индикатор PWR сигнализирует наличие питания, а крайние TX 485 и RX 485 – процесс передачи или приёма данных портом RS485 соответственно.

1.4.3 Описание порта интерфейса RS232

Интерфейс RS232 выведен на разъём DB9-M. Расположение сигнальных линий показано на рисунке 3, описание представлено в таблице 2.

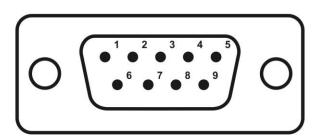


Рисунок 3 – Расположение сигнальных линий интерфейса RS232 на разъёме DB9-M

Таблица 2 – Описание сигнальных линий интерфейса RS232

Контакт	Наименование	Направление	Описание
1	_	_	Не используется

Контакт	Наименование	Направление	аправление Описание	
2	RXD	BXOД Принимаемые данные (Receive Data)		
3	TXD	выход	Передаваемые данные (Transmit Data)	
4	_	_	Не используется	
5	GND	_	Корпус системы (System Ground)	
6	_	_	Не используется	
7	_	_	Не используется	
8	_	_	Не используется	
9	_	_	Не используется	

1.4.4 Описание порта интерфейса RS485

Интерфейс RS485 выведен на разъёмные клеммные колодки, предназначенные для крепления провода с сечением до 24-12AWG (2,5мм²). На каждый порт выведены сигнальные линии, а также линии напряжения 5В, которое может использоваться для питания подключенных к преобразователю приборов. Расположение сигнальных линий показано на рисунке 4, описание приведено в таблице 3.

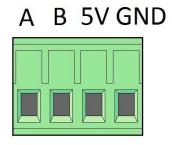


Рисунок 4 – Расположение сигнальных линий интерфейса RS485

Таблица 3 – Описание сигнальных линий интерфейса RS485

Обозначение контакта	Описание		
A (+D)	Прямой дифференциальный вход/выход (Data+)		
B (-D)	Инверсный дифференциальный вход/выход (Data-)		
+5V	Выход 5В		
GND	Земля (Ground)		

Порт RS485 преобразователя оснащён согласующим резистором 120 Ом, а также смещающими резисторами линий A и B, обеспечивающих большую помехозащищённость при отсутствии в сети активных передатчиков. Их подключение осуществляется DIP-переключателем, расположенным на торцевой стенке преобразователя (см. рисунок 2).

Назначение переключателей приведено в таблице 4. На рисунке 6 приведена схема подключения сигнальных линий интерфейса RS485 к драйверу внутри преобразователя.

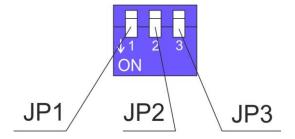


Рисунок 5 – настроечный DIP-переключатель порта интерфейса RS485

Таблица 4 – Назначение переключателей

Наименование переключателя	Состояние переключателя	Описание	
JP1	ON	Согласующий резистор 120 Ом между линиями сигнальными линиями А и В подключен	
JP1	OFF	Согласующий резистор 120 Ом между линиями сигнальными линиями А и В отключен	
JP2	ON	Сигнальная линия A подключена к линии 5В через резистор 1 кОм	
JP2	OFF	Сигнальная линия A подключена к линии 5В через резистор 150 кОм	
JP3	ON	Сигнальная линия В подключена к линии GND через резистор 1 кОм	
JIJ	OFF	Сигнальная линия В подключена к линии GND через резистор 150 кОм	

Подключение только одного из дифференциальных каналов через смещающий резистор 1 кОм, а второго через 150 кОм не рекомендуется.

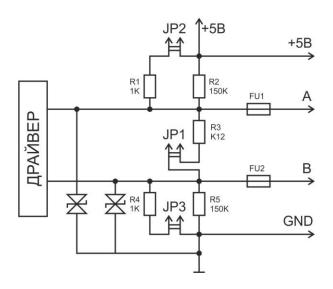


Рисунок 6 – Схема подключения драйвера RS485

1.4.5 Питание преобразователя

Питание преобразователя осуществляется от источника постоянного тока с номинальным напряжением от 9 до 35В и током до 350 мА через разъём клеммную колодку или напряжением 5 В через разъём USB. Преобразователь имеет защиту от обратной полярности питающего напряжения только на разъёме клеммная колодка.

1.5 Описание работы

Преобразователь осуществляют коммутацию сигналов портов RS232 и RS485, к которым подключены устройства или двухпроводная сеть RS485, с различными форматами данных в зависимости от режима работы. Гальваническая изоляция порта RS485 позволяет применять преобразователь в двухпроводных сетях RS485, т.е. соединять приборы, не имеющих общего заземления.

1.5.1 Режимы работы

Преобразователь способен работать в следующих режимах:

- передача данных с автоматическим определением параметров сигнала;
- передача данных с фиксированными параметрами сигнала;
- режим односторонней передачи данных;
- режим управления направлением передачи данных по сигналу RTS.

1.5.1.1 Передача данных с автоматическим определением параметров сигналов

Режим передачи данных с автоматическим определением параметров сигналов (режим «автомат») позволяет работать с любым форматом передаваемых данных в

диапазоне скоростей от 0 до 120 кбит/с. В этом режиме, при отсутствии передачи данных оба порта настроены на приём с линии RS485. При поступлении данных на один из портов, преобразователь переключает второй порт на передачу в линию RS485 на время длительности логических нулей и фронтов логических единиц (t₁). Рисунок 7 поясняет работу драйвера RS485 в режиме «автомат». Значения временных параметров приведены в таблице 5. Однако данный режим обладает меньшей помехозащищенностью по сравнению с режимом фиксированных скоростей, поэтому возможны сбои при подключении большого количества устройств в одну сеть или при работе на длинных линиях.

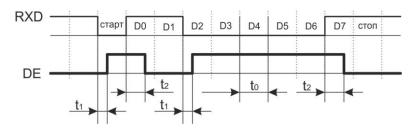


Рисунок 7 — Управление направлением передачи в режиме «автомат». RXD — данные на линии RXD порта интерфейса RS232, DE — «1» разрешение передачи данных по линии RS485

Таблица 5 – Допустимые значения временных параметров передачи

Наименование параметра	Минимальное значение	Максимальное значение
t_0 , время передачи одного бита, мкс	8,3	_
t ₁ , время задержки захвата линии RS485 при передаче нарастающего фронта, мкс	0,05	0,05
t ₂ , время задержки захвата линии RS485, мкс	0	0,15
t ₃ , время удержания линии RS485 после окончания стоп бита, мкс	4,5	6,5

1.5.1.2 Режим передачи данных с фиксированными параметрами

Режим передачи данных с фиксированными параметрами позволяет реализовать передачу данных с определённым форматом данных. Формат данных задается пользователем двумя параметрами:

- скорость передачи данных из заданного ряда: 1200, 1600, 1800, 2400, 3200, 3600, 4800, 6400, 7200, 9600, 12800, 14400, 19200, 28800, 38400, 57600, 115200 бод;
- общее количество бит в байте b (включая старт бит, биты данных, стоп биты, биты четности; общее количество от 4 до 12);
- время задержки захвата линии RS485 р (от 0 до 48 времени длительности одного бита на выбранной скорости).

В этом режиме оба порта преобразователя при отсутствии передачи данных настроены на приём с линии RS485. При поступлении старт бита на один из портов, другой порт переключается на передачу на время, необходимое для передачи одного байта.

Работа преобразователя в режиме с фиксированными параметрами показана на рисунке 8. Значения временных параметров приведены в таблице 6. После окончания стоп бита второй порт работает на передачу ещё в течение времени t₃, которое задаётся пользователем. Если в течение этого времени на порт, работающий на приём, не поступил следующий старт бит, второй порт переключается на приём данных с линии.

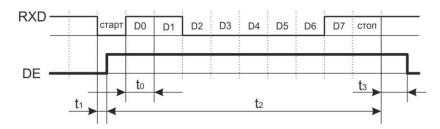


Рисунок 8 – Управление направлением передачи при работе с фиксированными параметрами. RXD – данные на линии RXD порта интерфейса RS232, DE – «1» разрешение передачи данных по линии RS485

Таблица 6 – Допустимые значения временных параметров передачи

Наименование параметра	Минимальное значение	Максимальное значение	
t_0 , время передачи одного бита, мкс	1/s	_	
t_1 , время задержки захвата линии RS485 при передаче нарастающего фронта, мкс	0,05	0,05	
t ₂ , время задержки захвата линии RS485, мкс	$b \cdot T_0 - 3,5$	$b \cdot T_0 - 1,0$	
t ₃ , время удержания линии RS485 после окончания стоп бита, мкс	$p \cdot T_0 - 1,5$	$p \cdot T_0 + 1,5$	

Режим передачи данных с фиксированными параметрами является стандартным для реализации интерфейса RS485 и его следует применять для получения максимальной помехозащищенности, дальности передачи или при подключении большого количества устройств к одной линии.

1.5.1.3 Режим односторонней передачи данных

В режиме односторонней передачи данных преобразователь постоянно транслирует данные в одном выбранном направлении. Направление передачи определяется при выборе режима.

Свечение одного из крайних индикаторов сигнализирует направление передачи данных: свечение индикатора 485 TX означает, что порт настроен на передачу, 485 RX – на приём; мигание среднего – процесс передачи.

1.5.1.4 Режим управления направлением передачи данных по сигналу RTS

В режиме управления направлением передачи данных по сигналу RTS преобразователь постоянно транслирует данные в одном выбранном направлении. Направление передачи определяется сигналом RTS на разъёме интерфейса RS232.

2 Эксплуатация

2.1 Эксплуатационные ограничения

Условия эксплуатации:

- запрещается использовать преобразователь при наличии в воздухе паров кислот,
 щелочей и других агрессивных примесей;
- не допускается эксплуатация преобразователя с механическими повреждениями;
- не допускается попадание влаги на клеммы и корпус преобразователя;
- температура воздуха окружающей среды должна находиться в пределах от –40 до +85°C;
- относительная влажность воздуха должна быть не более 80% при температуре 20°C

2.2 Подготовка преобразователя к эксплуатации

Перед началом эксплуатации преобразователя необходимо:

- 1. Убедиться в отсутствии механических повреждений.
- 2. Произвести настройку режима работы.
- 3. Подключить согласующие резисторы (если требуется).

2.3 Подключение преобразователя

При подключении преобразователя к одному устройству, необходимо подключить согласующие резисторы 5 Rc = 120 Oм на обоих устройствах. При подключении

⁵ При подключении согласующего резистора также подключаются смещающие резисторы входов преобразователя (см. рисунок 6).

преобразователя к сети RS485, согласующие резисторы устанавливаются только на двух максимально удаленных друг от друга устройствах. Пример подключения преобразователя к сети RS485 показан на рисунке 9. Рекомендуемые настройки порта интерфейса RS485 приведены в таблице 7.

Подключение согласующего резистора порта в преобразователе осуществляется путём перевода переключателя JP1 в положение «ON».

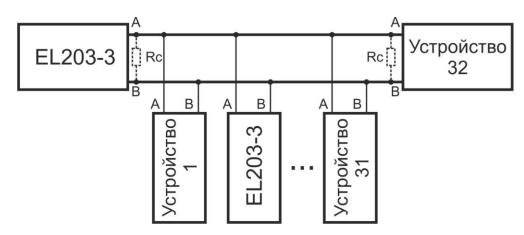


Рисунок 9 – Схема подключения преобразователя к сети RS485

Таблица 7 – Рекомендуемые настройки порта интерфейса RS485

Состояние переключателей	Рекомендации по применению		
↓1 2 3 ON	Рекомендуется использовать при подключении преобразователя к сети, в которой есть активные передатчики, не в крайнее положение		
↓1 2 3 ON	Рекомендуется использовать при подключении преобразователя к сети, в которой есть активные передатчики, в крайнее положение. А также при подключении к одному устройству.		
↓1 2 3 ON	Рекомендуется использовать при подключении преобразователя к сети, в которой отсутствуют активные передатчики, не в крайнее положение.		
↓1 2 3 ON	Рекомендуется использовать при подключении преобразователя к сети, в которой отсутствуют активные передатчики, в крайнее положение.		

2.4 Настройка режимов работы

Режимы работы преобразователя настраиваются кнопкой, расположенной на боковой стенке корпуса. Для выбора нужного режима необходимо перевести

преобразователь в режим настройки путём удержания кнопки в нажатом состоянии в момент включения (подачи питания) преобразователя. После отпускания кнопки преобразователь переходит в режим настройки, при этом средний светодиод начнет мигать, состояние остальных будет зависеть от настроек текущего режима работы. Режим работы выбирается однократным нажатием кнопки. Соответствие свечения светодиодов режиму работы приведено в таблице 8. Для сохранения настроек и выхода из режима настройки необходимо подождать 5 с или отключить питание преобразователя.

Таблица 8 – Соответствие сигналов индикаторов режимам работы

Режим работы	TxD1	PWR	TxD2
«автомат» ⁶		- X	
Передача в направлении Порт1→Порт2		- X	-\\
Передача в направлении Порт2←Порт1	\	- X	
Передача данных с фиксированными параметрами	\	- X	-\\
Управление направлением передачи данных по сигналам RTS	- X	- X -	

- индикатор не светится

– индикатор мигает

– индикатор светится

Если был выбран режим работы передачи данных с фиксированными скоростями, то после ожидания 5 секунд преобразователь перейдёт в режим настройки параметров формата данных, при этом все светодиоды перестанут светиться.

2.4.1 Настройка режима передачи данных с фиксированными параметрами

Настройка преобразователя EL203-3D для работы в режиме фиксированной скорости обмена выполняется путём подключения преобразователя к персональному компьютеру через порт RS232 нуль-модемным кабелем. Ввод необходимых параметров

⁶ В режиме работы «автомат» переключатели JP2 и JP3 должны быть переведены в положение «ОN».

режима (скорости обмена, длины байта, длины паузы) с помощью стандартного программного обеспечения операционной системы ПК – программы терминала. Введенные значения параметров, при этом, записываются в энергонезависимую память модулей и сохраняются при отключении питания.

Так как большинство ПК не имеет собственного встроенного интерфейса RS232, для подключения преобразователя к ПК необходимо использовать специальные устройства – преобразователи интерфейсов: USB в RS232.

Настройка преобразователя производится в диалоговом режиме, при помощи любой стандартной программы-терминала, установленной на ПК.

Программа-терминал должна использовать стандартные настройки коммуникационного канала:

- длина слова данных 8 бит;
- количество стоп-бит -1;
- режим проверки без проверки на четность;
- управление потоком отсутствует.

Для начала процедуры настройки, подключите порт RS232 преобразователя EL203-3D к персональному компьютеру. Переведите преобразователь в режим настройки, а затем в режим связи с компьютером. Для этого выполните следующую последовательность действий:

- 1. При выключенном питании преобразователя нажмите и удерживайте кнопку управления.
- 2. Включите питание преобразователя путем подключения к нему адаптера питания.
- 3. После появления индикации отпустите кнопку устройство перейдет в специальный, настроечный режим работы. При этом будет мигать индикатор "PWR".
- 4. Последовательными нажатиями на кнопку управления выберите режим работы с фиксированной скоростью обмена индикаторы "ТХ 485" и " RX 485" должны светиться.
- 5. Подождите 5 сек до того, как все индикаторы преобразователя погаснут. Это является признаком перехода устройства в режим обмена с компьютером.

Далее преобразователь будет находится в режиме ожидания обмена с компьютером (вплоть до выключения питания).

На персональном компьютере запустите программу-терминал со стандартными настройками. В качестве рабочего порта в программе должен быть указан СОМ-порт

(физический или виртуальный), к которому подключен преобразователь интерфейсов. Затем, нажмите дважды на клавиатуре ПК клавишу "Space" (Пробел).

При нормальной работе и правильного подключения преобразователя на экране отобразится название модели преобразователя, номер версии и строку с текущими значениями параметров, а также, символ ">" - приглашение к работе:

```
EL200-1_V01: s=9600 b=10.0 p=00.0 c=4 t=104.00 >_
```

Повторное нажатие на клавишу "Space" (Пробел) вызовет повторный вывод строки с текущими значениями переменных.

В качестве команды выбора переменной для ввода используется соответствующая ей буква. При этом должен быть установлен латинский регистр ввода с клавиатуры:

- s ввод скорости обмена
- b ввод длины байта в битах
- р ввод длины паузы в битах
- с ввод номера режима работы
- (t не вводится, это информационный параметр для контроля работы преобразователя при его изготовлении)

После выбора переменной, на экран выдается символ "=" – приглашение для ввода значения переменой. Далее, можно набрать новое значение данной переменной и ввести его при помощи клавиши "Enter" (Ввод).

При вводе значений переменных необходимо соблюдать общепринятые форматы ввода для действительных и целых чисел. Параметры b и р вводятся как целые или действительные числа без знака, а параметры s и с – как целые числа без знака. В качестве разделителя целой и дробной частей действительного числа можно использовать символы точки или запятой. Редактирование (удаление символов) производится клавишей "BackSpace", а отмена ввода – клавишей "Escape" (Отмена).

Далее, в качестве примера, приводится последовательный ввод значений параметров s, b и р для преобразователя EL200-1. Выделенные символы вводятся пользователем:

```
EL200_V01: s=9600 b=10.0 p=00.0 c=4 t=104.00

>s=115200 OK

EL200_V01: s=115200 b=10.0 p=00.0 c=4 t=104.00

>b=12 OK

EL200_V01: s=115200 b=12.0 p=00.0 c=4 t=104.00

>p=0.5 OK

EL200_V01: s=115200 b=12.0 p=00.5 c=4 t=104.00

>p=0.5 OK
```

Допустимые значения для скорости обмена s, выбираются из следующего набора: 1200; 1600; 1800; 2400; 3200; 3600; 4800; 6400; 7200; 9600; 12800; 14400; 19200; 28800; 38400; 57600; 115200.

Допустимые значения для параметра b, выбираются из следующего набора: 4,0; 4,5; 5,0; 5,5; 6,0; 6,5; 7,0; 7,5; 8,0; 8,5; 9,0; 9,5; 10,0; 10,5; 11,0; 11,5; 12,0; т. е. любое значение от 4 до 12 включительно с шагом 0,5.

Допустимые значения для параметра p, выбираются из следующего набора: 0; 0,5; 1,0; 1,5; ...; 47,0; 47,5; 48,0; т. е. любое значение от 0 до 48 включительно с шагом 0,5.

Допустимые значения параметра с (номер рабочего режима преобразователя):

- c = 0 -режим «автомат»,
- c = 1 режим односторонней передачи в направлении Порт $1 \to \text{Порт } 2$,
- с = 2 режим односторонней передачи в направлении Порт 1 ← Порт 2,
- c = 3 резерв (не используется),
- с = 4 полудуплексный режим с фиксированной скоростью передачи,
- c = 5 режим управления направлением передачи информации сигналом RTS.

При вводе допустимых значений переменных, выдается ответ "ОК" и новое значение переменной сразу же сохраняется в энергонезависимой памяти модуля. При вводе недопустимых значений или несоблюдении формата ввода, выдается ответ "ЕR" (ошибка), а текущее значение переменной не изменяется. После любого завершения ввода (успешного или неуспешного) всегда выдается строка с текущими значениями параметров, хранящихся в энергонезависимой памяти устройства.

Для завершения настройки устройства какие-либо специальные команды не требуются. Диалог с преобразователем может быть прерван в любой момент отключением

его от линии или выключением питания устройства. При этом, будут использоваться последние введенные параметров, сохраненные в энергонезависимой памяти.

3 Техническое обслуживание

Преобразователь не требует технического обслуживания.

4 Текущий ремонт

Ремонт преобразователя осуществляется только у изготовителя.

5 Хранение

Преобразователь следует хранить в закрытых помещениях с естественной вентиляцией при температуре от -50 до +85°C и относительной влажности воздуха 80% при температуре 20°C. Наличие в воздухе паров кислот, щелочей и других агрессивных примесей не допускается.

6 Транспортирование

Преобразователь может транспортироваться всеми видами закрытого транспорта в соответствии с правилами перевозок, действующими на каждом виде транспорта.

7 Сведения о содержании драгоценных металлов

Преобразователь не содержит драгоценных металлов.

8 Утилизация

Утилизация преобразователя производится в порядке, принятом на предприятиипотребителе. После окончания срока службы преобразователь не представляет опасности для жизни, здоровья людей и окружающей среды.

Срок службы – 10 лет со дня изготовления.

9 Гарантии изготовителя

Изготовитель гарантирует соответствие преобразователя требованиям ТУ 4035-001-79338707-2013 при соблюдении условий эксплуатации, хранения и транспортирования.

Гарантийный срок эксплуатации – 5 лет со дня продажи.

Сертификат соответствия ТС № RU Д-RU.AГ73.B.06302 от 10.12.2013.